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Three attractively interacting fermions in a harmonic trap: Exact solution, ferromagnetism,
and high-temperature thermodynamics
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Three fermions with strongly repulsive interactions in a spherical harmonic trap constitute the simplest
nontrivial system that can exhibit the onset of itinerant ferromagnetism. Here, we present exact solutions for
three trapped, attractively interacting fermions near a Feshbach resonance. We analyze energy levels on the
upper branch of the resonance where the atomic interaction is effectively repulsive. When the s-wave scattering
length a is sufficiently positive, three fully polarized fermions are energetically stable against a single spin-flip,
indicating the possibility of itinerant ferromagnetism, as inferred in the recent experiment. We also investigate
the high-temperature thermodynamics of a strongly repulsive or attractive Fermi gas using a quantum virial
expansion. The second and third virial coefficients are calculated. The resulting equations of state can be tested
in future quantitative experimental measurements at high temperatures and can provide a useful benchmark for
quantum Monte Carlo simulations.
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I. INTRODUCTION

Few-particle systems have become increasingly crucial
to the physics of strongly interacting ultracold quantum
gases [1–3]. Because of large interaction parameters, con-
ventional perturbation theory approaches to quantum gases,
such as mean-field theory, simply break down [2–4]. A
small ensemble of a few fermions and/or bosons, which
is either exactly solvable or numerically tractable, is more
amenable to nonperturbative quantal calculations. Although
challenging experimentally, such ensembles benefit from the
same unprecedented controllability and tunability as in a
mesoscopic system containing a hundred thousand particles.
The atomic species, the quantum statistics, the s-wave and
higher partial-wave interactions [5], and the external trapping
environment can all be controlled experimentally. The study
of few-particle systems can therefore give valuable insights
into the more complicated mesoscopic many-body physics of
a strongly interacting quantum gas. In addition to qualitative
insights, these solutions have already proved invaluable in
developing high-temperature quantum virial or cluster expan-
sions for larger systems [6], which have been recently verified
experimentally [7].

The purpose of this article is to add a further milestone
in this direction. By exactly solving the eigenfunctions of
three attractively interacting fermions in a spherical harmonic
trap, we aim to give a few-body perspective of itinerant fer-
romagnetism in an effectively repulsive Fermi gas, which was
observed as a transient phenomenon in a recent measurement
at MIT [8]. This is possible because the quantum three-body
problem with s-wave interactions is exactly soluble in three
dimensions. It is interesting to recall that the corresponding
classical three-body problem is notoriously insoluble. The
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reason for this unexpectedly docile quantum behavior is that
the s-wave interaction Hamiltonian applicable to ultracold
Bose and Fermi gases is essentially just a boundary condition
on an otherwise noninteracting quantum gas. Thus, we have
an unusual situation where quantum mechanics actually
simplifies an intractable classical problem.

For Bose-Einstein condensates (BEC) in the strongly
interacting regime, three trapped bosonic atoms with large
s-wave scattering length were already investigated theoreti-
cally as a minimum prototype [9] of this few-body physics.
To understand the fascinating crossover from a BEC to a
BCS superfluid, two spin-up and two spin-down fermions
in a trap were also simulated numerically, constituting the
simplest model of the BEC-BCS crossover problem [10,11].
Moreover, knowledge of few-particle processes such as three-
body recombination is primarily responsible for controlling the
loss rate or lifetime of ultracold atomic gases, which, in many
cases, imposes severe limitations on experiments. Important
examples in this context include the confirmation of stability
of dimers in the BEC-BCS crossover [12] and the discovery
of the celebrated Efimov state (i.e., a bound state of three
resonantly interacting bosons) as well as the related universal
four-body bound state [13].

Whether an itinerant Fermi gas with repulsive interac-
tions exhibits ferromagnetism is a long-standing problem
in condensed matter physics [14]. It has recently attracted
increasing attention in the cold-atom community [15–24].
The answer depends on a competition between the repulsive
interaction energy and the cost of kinetic energy arising from
Pauli exclusion. A strong repulsive interaction can induce
polarization or ferromagnetism, since fermions with the same
spin orientation are protected from local interactions by the
exclusion principle. This, however, increases the Fermi energy,
as all fermions must now occupy the same band. The difficulty
in finding the transition point is that quantum correlations
change the interaction energy in a way that is difficult to
calculate in general.
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As early as the 1930s, Stoner [14] showed with a simple
model using mean-field theory that ferromagnetism in a
homogeneous Fermi gas will always take place. This model,
however, gives the unphysical result that the interaction energy
within the mean-field approximation scales linearly with the
s-wave scattering length a and therefore could be infinitely
large. The predicted critical interaction strength at zero
temperature, (kF a)c = π/2, where kF is the Fermi wave-vector
is also too large in the mean-field picture. An improved
prediction from second-order perturbation theory, (kF a)c �
1.054, suffers from similar doubts about its validity [15,18].
Most recently, three independent ab initio quantum Monte
Carlo simulations conclusively reported a zero-temperature
ferromagnetic phase transition at (kF a)c � 0.8–0.9 [19,22,23].

Several important issues are still open, including the nature
of transition at finite temperatures. The unitarity limited in-
teraction energy at infinitely large scattering length (a → ∞)
is also to be determined.

The exciting experiment at MIT of 6Li atoms realized in
some sense the textbook Stoner model [8]. A crucial aspect
in this realization is that the interatomic interactions are very
different from the conventional model of hard-sphere interac-
tions [15,22,23]. In the experiment, the atoms are on the upper
branch of a Feshbach resonance with a positive scattering
length a > 0 and a negligible effective interaction range. The
properties of the atoms are therefore universal, independent of
the details of the interactions [25,26]. This universality, how-
ever, comes at a price: the underlying two-body interaction is
always attractive, so that the ground state is a gas of molecules
of size a. The experiment thus suffers from considerable atom
loss and has to be carried out under nonequilibirum conditions.
This is clearly explained in Fig. 1, which shows the relative
energy spectrum of a pair of fermions in a harmonic trap with
frequency ω across a Feshbach resonance [27]. For a > 0,
the whole spectrum consists of two distinct parts, the lowest
ground-state branch diverging as Erel � −h̄2/(ma2) and the
regular upper branch having a finite energy. In the context
of this two-body picture, an s-wave “repulsive” Fermi gas is
realized, provided that there are no pairs of fermions occupying
the ground state branch of molecules. However, as far as the
many-particle aspect is concerned, it is not clear to what extent
this two-body picture of a repulsive Fermi gas will persist. In
other words, can we prove rigorously that the whole Hilbert
space of an attractive many-fermion system with a positive
scattering length consists exactly of a sub-Hilbert space of a
repulsive Fermi gas with the same scattering length, together
with an orthogonalized subspace of molecules?

This article addresses the problem of itinerant ferro-
magnetism in an attractive Fermi gas using a few-particle
perspective by examining the exact solutions for the energy
spectrum of three trapped, attractively interacting fermions in
their upper branch of the Feshbach resonance. Our main results
may be summarized as follows.

(1) First, we present an elegant and physically transparent
way to exactly solve the Hamiltonian of three interacting
fermions in a harmonic trap. The method may easily be
generalized to treat other systems with different types of atomic
species, geometries, and interactions.

(2) Second, we observe clearly from the whole relative
energy spectrum of three attractive fermions (see Fig. 3) that

FIG. 1. (Color online) Energy spectrum of the relative mo-
tion of a trapped two-fermion system near a Feshbach resonance
(i.e, d/a = 0, where d is the characteristic harmonic oscillator
length). For a positive scattering length a > 0 in the right part of
the figure, the ground state is a molecule with size a, whose energy
diverges as Erel � −h̄2/(ma2). The excited states or the upper branch
of the resonance may be viewed as the Hilbert space of a repulsive
Fermi gas with the same scattering length a. In this two-body picture,
the level from the point 2 to 3 is the ground-state energy level of
the repulsive two-fermion subspace, whose energy initially increases
linearly with increasing a from 1.5h̄ω at the point 2 and finally
saturates toward 2.5h̄ω at the resonance point 3. For comparison,
we illustrate as well the ground-state energy level in the case of a
negative scattering length and show how the energy increases with
increased scattering length from point 1 to 2.

there are indeed two branches of the spectrum on the side of
positive scattering length. As the scattering length goes to an
infinitely small positive value, the lower branch diverges in
energy to −∞, while another upper branch always converges
to the noninteracting limit. The latter may be interpreted as the
energy spectrum of three “repulsively” interacting fermions.
However, close to the Feshbach resonance, there are many
nontrivial avoided crossings between two types of spectra,
making it difficult to unambiguously identify a repulsive Fermi
system. These avoided crossings are expected in more general
cases and lead to nontrivial consequences in a time-dependent
field-sweep experiment passing from the weakly interacting
regime at a = 0+ to the unitarity limit at a = +∞.

(3) Third, we show exactly that near the Feshbach reso-
nance, three repulsively’ interacting fermions in a spherical
harmonic trap, say, in a two spin-up and one spin-down
configuration, are higher in total energy than three fully
polarized fermions [see the ground-state energy in Fig. 3(b)].
Thus, there must be a ferromagnetic transition occurring at
a certain critical scattering length. Note that ferromagnetism
cannot be obtained in a two-fermion system. As shown in
Fig. 1, even at resonance the total ground-state energy of a
repulsively interacting pair, Epair = 4h̄ω, which is the sum
of the relative ground-state energy Erel = 2.5h̄ω and the
zero-point energy of center-of-mass motion Ecm = 1.5h̄ω,
cannot be larger than the total ground-state energy of two
fully polarized fermions, that is, E↑↑ = 4h̄ω.

(4) Last but most importantly, we obtain the high-
temperature equations of state of strongly interacting Fermi
gases (see Figs. 4, 5, 6, and 7), within a quantum virial
expansion theory, which was developed recently by the
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present authors [6]. The second and third virial (expansion)
coefficients of both attractive and repulsive Fermi gases
can be calculated, using the full energy spectrum of three
interacting fermions. In the unitarity limit, we find that in the
high-temperature regime where our quantum virial expansion
is reliable, the itinerant ferromagnetism disappears.

The article is organized as follows. In the next section,
we outline the theoretical model for a few fermions with
s-wave interactions in a spherical harmonic trap. In Sec. III,
we explain how to construct the exact wave functions for three
interacting fermions and discuss in detail the whole energy
spectrum. In Sec. IV we develop a quantum virial expansion
for thermodynamics and calculate the second and third virial
coefficients, based on the full energy spectrum of two-fermion
and three-fermion systems, respectively. The high-temperature
equations of state of strongly interacting Fermi gases are then
calculated and discussed in Sec. V. Finally, Sec. VI is devoted
to conclusions and some final remarks. The appendices show
the numerical details of the exact solutions.

II. MODELS

Consider a few fermions in a three-dimensional (3D)
isotropic harmonic trap V (x) = mω2x2/2 with the same mass
m and trapping frequency ω, occupying two different hyperfine
states or two spin states. The fermions with unlike spins attract
each other via a short-range s-wave contact interaction. It
is convenient to use the Bethe-Peierls boundary condition to
replace the s-wave pseudopotential. That is, when any particles
i and j with unlike spins are close to each other, rij = |xi −
xj | → 0, the few-particle wave function ψ(x1,x2, . . . ,xN )
with proper symmetry should satisfy [28–30]

ψ = Aij

(
Xij = xi + xj

2
,{xk �=i,j }

) (
1

rij

− 1

a

)
, (1)

where Aij (Xij ,{xk �=i,j }) is a function independent of rij , and
a is an s-wave scattering length. This boundary condition can
be equivalently written as

lim
rij →0

∂(rijψ)

∂rij

= − rijψ

a
. (2)

Otherwise, the wave function ψ obeys a noninteracting
Schrödinger equation:

N∑
i=1

[
− h̄2

2m
∇2

xi
+ 1

2
mω2x2

i

]
ψ = Eψ. (3)

We now describe how to solve all the wave functions with
energy level E for a two- or three-fermion system.

III. METHOD

In a harmonic trap, it is useful to separate the center-of-mass
motion and the relative motion. We thus define the following
center-of-mass coordinate R and relative coordinates ri (i � 2)
for N fermions in a harmonic trap [29,30] as

R = (x1 + · · · + xN ) /N (4)

and

ri =
√

i − 1

i

(
xi − 1

i − 1

i−1∑
k=1

xk

)
, (5)

respectively. In this Jacobi coordinate, the Hamiltonian of
the noninteracting Schrödinger equation takes the form H0 =
Hcm + Hrel, where

Hcm = − h̄2

2M
∇2

R + 1

2
Mω2R2 (6)

and

Hrel =
N∑

i=2

[
− h̄2

2m
∇2

ri
+ 1

2
mω2r2

i

]
. (7)

The center-of-mass motion is simply that of a harmonically
trapped particle of mass M = Nm, with well-known wave
functions and spectrum Ecm = (ncm + 3/2)h̄ω, where ncm =
0,1,2, . . . , is a non-negative integer. In the presence of interac-
tions, the relative Hamiltonian should be solved in conjunction
with the Bethe-Peierls boundary condition, Eq. (2).

A. Two fermions in a 3D harmonic trap

Let us first briefly revisit the two-fermion problem in
a harmonic trap, where the relative Schrödinger equation
becomes[

− h̄2

2µ
∇2

r + 1

2
µω2r2

]
ψ rel

2b (r) = Erelψ
rel
2b (r), (8)

where two fermions with unlike spins do not stay at the same
position (r > 0). Here, we have redefined r = √

2r2 and have
used a reduced mass µ = m/2. It is clear that only the l = 0
subspace of the relative wave function is affected by the s-wave
contact interaction. According to the Bethe-Peierls boundary
condition, as r → 0 the relative wave function should take
the form ψ rel

2b (r) → (1/r − 1/a) or satisfy ∂(rψ rel
2b )/∂r =

−(rψ rel
2b )/a. The two-fermion problem in a harmonic trap was

first solved by Busch and co-workers [27]. Here, we present a
simple physical interpretation of the solution.

The key point is that, regardless of the boundary condition,
there are two types of general solutions of the relative
Schrödinger equation, Eq. (8), in the l = 0 subspace, ψ rel

2b (r) ∝
exp(−r2/2d2)f (r/d). Here the function f (x) can either be
the first kind of Kummer confluent hypergeometric function
1F1 or the second kind of Kummer confluent hypergeometric
function U . We have taken d = √

h̄/µω as the characteristic
length scale of the trap. In the absence of interactions, the first
Kummer function gives rise to the standard wave function of
3D harmonic oscillators. With interactions, however, we have
to choose the second Kummer function U , since it diverges as
1/r at the origin and thus satisfies the Bethe-Peierls boundary
condition.

Therefore, the (unnormalized) relative wave function and
relative energy should be rewritten as

ψ rel
2b (r; ν) = �(−ν)U

(
−ν,

3

2
,
r2

d2

)
exp

(
− r2

2d2

)
(9)
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and

Erel =
(

2ν + 3

2

)
h̄ω, (10)

respectively. Here, � is the Gamma function, the real number ν

plays the role of a quantum number and should be determined
by the boundary condition limr→0 ∂(rψ rel

2b )/∂r = −(rψ rel
2b )/a.

By examining the short-range behavior of the second Kummer
function U (−ν,3/2,x), this leads to the familiar equation for
energy levels,

2�(−ν)

�(−ν − 1/2)
= d

a
. (11)

In Fig. 1, we give the resulting energy spectrum as a function
of the dimensionless interaction strength d/a.

The spectrum is easy to understand. At infinitely small scat-
tering length a → 0−, ν(a = 0−) = nrel (nrel = 0,1,2, . . . ,),
which recovers the spectrum in the noninteracting limit. With
increasingly attractive interactions, the energies decrease. In
the unitarity (resonance) limit where the scattering length
diverges, a → ±∞, we find that ν(a = ±∞) = nrel − 1/2. As
the attraction increases further, the scattering length becomes
positive and decreases in magnitude. We then observe two
distinct types of behavior: the ground state is a molecule of
size a, whose energy diverges asymptotically as −h̄2/ma2

as a → 0+, while the excited states may be viewed as two
repulsively interacting fermions with the same scattering
length a. Their energies decrease to the noninteracting values
as a → 0+.

In this two-body picture, a universal repulsively interacting
Fermi gas with zero-range interaction potentials may be
realized on the positive scattering length side of a Feshbach
resonance for an attractive interaction potential, provided that
all two fermions with unlike spins occupy the excited states or
the upper branch of the two-body energy spectrum.

B. Three fermions in a 3D harmonic trap

Let us turn to the three-fermion case by considering two
spin-up fermions and one spin-down fermion, that is, the ↑↓↑
configuration shown in Fig. 2. The relative Hamiltonian can
be written as [29,30]

Hrel = h̄2

2µ

(∇2
r + ∇2

ρ

) + 1

2
µω2(r2 + ρ2), (12)

where we have redefined the Jacobi coordinates r = √
2r2 and

ρ = √
2r3, which measure the distance between the particles

1 and 2 (i.e., pair) and the distance from the particle 3 to the
center-of-mass of the pair, respectively.

FIG. 2. (Color online) Configuration of three interacting
fermions, two spin-up and one spin-down.

1. General exact solutions

Inspired by the two-fermion solution, it is readily seen
that the relative wave function of the Hamiltonian (12)
may be expanded into products of two Kummer confluent
hypergeometric functions. Intuitively, we may write down the
following ansatz [6],

ψ rel
3b (r,ρ) = (1 − P13) χ (r,ρ) , (13)

where

χ (r,ρ) =
∑

n

anψ
rel
2b (r; νl,n)Rnl (ρ) Ym

l (ρ̂) . (14)

The two-body relative wave function ψ rel
2b (r; νl,n) with energy

(2νl,n + 3/2)h̄ω describes the motion of the paired particles
1 and 2, and the wave function Rnl(ρ)Ym

l (ρ̂) with energy
(2n + l + 3/2)h̄ω gives the motion of particle 3 relative to
the pair. Here, Rnl(ρ) is the standard radial wave function of a
3D harmonic oscillator and Ym

l (ρ̂) is the spherical harmonic.
Owing to the rotational symmetry of the relative Hamiltonian
(12), it is easy to see that the relative angular momenta l and
m are good quantum numbers. The value of νl,n is uniquely
determined from energy conservation,

Erel = [(2νl,n + 3/2) + (2n + l + 3/2)]h̄ω, (15)

for a given relative energy Erel. It varies with the index
n at a given angular momentum l. Finally, P13 is an
exchange operator for particles 1 and 3, which ensures the
correct exchange symmetry of the relative wave function
due to the Fermi exclusion principle, that is, P13χ (r,ρ) =
χ (r/2 + √

3ρ/2,
√

3r/2 − ρ/2). The relative energy Erel to-
gether with the expansion coefficient an should be deter-
mined by the Bethe-Peierls boundary condition, that is,
limr→0[∂rψ rel

3b (r,ρ)]/∂r = −[rψ rel
3b (r,ρ)]/a. We note that the

second Bethe-Peierls boundary condition in the case of particle
2 approaching particle 3 is satisfied automatically due to the
exchange operator acting on the relative wave function.

By writing χ (r,ρ) = φ(r,ρ)Ym
l (ρ̂), the Bethe-Peierls

boundary condition takes the form (r → 0)

−1

a
[rφ(r,ρ)] = ∂ [rφ(r,ρ)]

∂r
− (−1)l φ

(√
3ρ

2
,
ρ

2

)
. (16)

Using the asymptotic behavior of the second kind of Kum-
mer function, limx→0 �(−νl,n)U (−νl,n,3/2,x2) = √

π/x −
2
√

π�(−νl,n)/�(−νl,n − 1/2), it is easy to show that, in the
limit of r → 0,

−1

a
[rφ(r,ρ)] = −

√
π

a

∑
n

anRnl (ρ) (17)

and

∂ [rφ(r,ρ)]

∂r
= −√

π
∑

n

anRnl(ρ)
2�(−νl,n)

�(−νl,n − 1/2)
. (18)

Thus, the Bethe-Peierls boundary condition becomes

∑
n

an

[
BnRnl (ρ) − Rnl

(ρ

2

)
ψ rel

2b

(√
3ρ

2
; νl,n

)]
= 0, (19)
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where

Bn = (−1)l
√

π

[
d

a
− 2�(−νl,n)

�(−νl,n − 1/2)

]
. (20)

Projecting onto the orthogonal and complete set of basis
functions Rnl(ρ), we find a secular equation,

2�(−νl,n)

�(−νl,n − 1/2)
an + (−1)l√

π

∑
n′

Cnn′an′ =
(

d

a

)
an, (21)

where we have defined the matrix coefficient,

Cnn′ ≡
∫ ∞

0
ρ2dρRnl (ρ) Rn′l

(ρ

2

)
ψ rel

2b

(√
3ρ

2
; νl,n′

)
, (22)

which arises from the exchange effect due to the operator P13.
In the absence of Cnn′ , the aforementione secular equation
describes a three-fermion problem of a pair and a single
particle, uncorrelated to each other. It then simply reduces
to Eq. (11), as expected.

The secular equation, Eq. (21), was first obtained by Kestner
and Duan [31] by solving the three-particle scattering problem
using the Green function. To solve it, for a given scattering
length we may try different values of relative energy Erel,
implicit via νl,n. However, it turns out to be more convenient to
diagonalize the matrix A = {Ann′ } for a given relative energy,
where

Ann′ = 2�(−νl,n)

�(−νl,n − 1/2)
δnn′ + (−1)l√

π
Cnn′ . (23)

The eigenvalues of the matrix A then gives all the possible
values of d/a for a particular relative energy. We finally
invert a(Erel) to obtain the relative energy as a function of
the scattering length. Numerically, we find that the matrix A
is symmetric and thus the standard diagonalization algorithm
can be used. We outline the details of the numerical calculation
of Eq. (23) in Appendix A.

2. Exact solutions in the unitarity limit

In the unitarity limit with infinitely large scattering length,
a → ∞, we may obtain more physical solutions using hy-
perspherical coordinates, as shown by Werner and Castin
[28,30]. By defining a hyperradius R =

√
(r2 + ρ2)/2 and

hyperangles �� = (α,r̂,ρ̂), where α = arctan(r/ρ) and r̂ and
ρ̂ are, respectively, the unit vector along r and ρ, we may
write [28,30]

ψ rel
3b (R, ��) = F (R)

R
(1 − P13)

ϕ (α)

sin (2α)
Ym

l (ρ̂) (24)

to decouple the motion in the hyperradius and the hyperangles
for given relative angular momenta l and m. This leads to the
following decoupled Schrödinger equations [30]:

−F ′′ − 1

R
F ′ +

(
s2
l,n

R2
+ ω2R2

)
F = 2ErelF (25)

and

−ϕ′′ (α) + l (l + 1)

cos2 α
ϕ (α) = s2

l,nϕ (α) , (26)

where s2
l,n is the eigenvalue for the nth wave function of the

hyperangle equation.

For three fermions, s2
l,n is always positive. Therefore, the

hyperradius equation (25) can be interpreted as a Schrödinger
equation for a fictitious particle of mass unity moving in two
dimensions in an effective potential (s2

l,n/R
2 + ω2R2) with

a bounded wave function F (R). The resulting spectrum is
[28,30]

Erel = (2q + sl,n + 1)h̄ω, (27)

where the good quantum number q labels the number of nodes
in the hyperradius wave function.

The eigenvalue sl,n should be determined by the Bethe-
Peierls boundary condition, which in hyperspherical coordi-
nates takes the form [28,30]

ϕ′ (0) − (−1)l
4√
3
ϕ

(π

3

)
= 0. (28)

In addition, we need to impose the boundary condition
ϕ (π/2) = 0, since the relative wave function (24) should not
be singular at α = π/2. The general solution of the hyperangle
equation, Eq. (26), satisfying ϕ (π/2) = 0 is given by

ϕ ∝ xl+1
2F1

(
l + 1 − sl,n

2
,
l + 1 + sl,n

2
,l + 3

2
; x2

)
, (29)

where x = cos(α) and 2F1 is the hypergeometric function. In
the absence of interactions, the Bethe-Peierls boundary con-
dition (28) should be replaced by ϕ (0) = 0, since the relative
wave function (24) should not be singular at α = 0 either.
As ϕ (0) = �(l + 3/2)�(1/2)/[�((l + 2 + sl,n)/2)�((l + 2 −
sl,n)/2)], this boundary condition leads to [l + 2 − s

(1)
l,n]/2 =

−n, or s
(1)
l,n = 2n + l + 2, where n = 0,1,2, . . . , is a non-

negative integer and we have used the superscript “1” to denote
a noninteracting system. However, a spurious solution occurs
when l = 0 and n = 0, for which s

(1)
l,n = 2, ϕ(α) = sin(2α)/2

and, thus, the symmetry operator (1 − P13) gives a vanishing
relative wave function in Eq. (24) that should be discarded [30].
We conclude that, for three noninteracting fermions,

s
(1)
l,n =

{
2n + 4, l = 0,

2n + l + 2, l > 0.
(30)

For three interacting fermions, we need to determine sl,n by
substituting the general solution (29) into the Bethe-Peierls
boundary condition (28). In Appendix B, we describe how to
accurately calculate sl,n. In the boundary condition, Eq. (28),
the leading effect of interactions is carried by ϕ′ (0) and,
therefore, ϕ′ (0) = 0 determines the asymptotic values of sl,n

at large momentum l or n. This gives rise to (l + 1 − s̄l,n)/2 =
−n, or

s̄l,n =
{

2n + 3, l = 0,

2n + l + 1, l > 0,
(31)

where we have used a bar to indicate the asymptotic results.
By comparing Eqs. (30) and (31), asymptotically the attractive
interaction will reduce sl,n by a unity.

3. Energy spectrum of three interacting fermions

We have numerically solved both the general exact solution
(13) along the BEC-BCS crossover and the exact solution (24)
in the unitarity limit. In the latter unitary case, the accuracy of

023619-5



XIA-JI LIU, HUI HU, AND PETER D. DRUMMOND PHYSICAL REVIEW A 82, 023619 (2010)

FIG. 3. (Color online) Relative energy spectrum of three inter-
acting fermions at different subspaces or relative angular momenta
l. On the positive scattering length (BEC) side of the resonance,
there are two types of energy levels: one (is vertical and) diverges
with decreasing the scattering length a and the other (is horizontal)
converges to the noninteracting spectrum. The latter may be viewed
as the energy spectrum of three repulsively interacting fermions. In
analogy with the two-fermion case, we show in the ground-state
subspace (l = 1) the ground-state energy level of the repulsive
three-fermion system (i.e, from point 2 to point 3), as well as the
ground-state energy level of the attractive three-fermion system for
a < 0 (i.e., from the point 1 to point 2). In the unitarity limit, we
show by the circles the energy levels that should be excluded when we
identify the energy spectrum for infinitely large repulsive interactions.

results can be improved to arbitrary precision by using suitable
mathematical software, described in Appendix B. Figure 3
reports the energy spectrum of three interacting fermions with
increasingly attractive interaction strength at three total relative
angular momenta, l = 0, 1, and 2. For a given scattering
length, we typically calculate several ten thousand energy
levels [i.e., Erel < (l + 256)h̄ω] in each different subspace.

To construct the matrix A, Eq. (23), we have kept a maximum
value of nmax = 128 in the functions Rnl(ρ). Using the accurate
spectrum in the unitarity limit as a benchmark, we estimate that
the typical relative numerical error of energy levels is less than
10−6. We have found a number of nontrivial features in the
energy spectrum.

The spectrum on the BCS side is relatively simple. It can
be understood as a noninteracting spectrum at d/a → −∞,
in which Erel = (2Q + 3)h̄ω at l = 0 and Erel = (2Q + l +
1)h̄ω at l � 1, with a positive integer Q = 1,2,3, . . . , that
denotes also the degeneracy of the energy levels. The attractive
interactions reduce the energies and at the same time lift the
degeneracy. Above the resonance or unitary point of d/a = 0,
however, the spectrum becomes much more complicated.

There are a group of nearly vertical energy levels that
diverge toward the BEC limit of d/a → +∞. From the
two-body relative energy spectrum in Fig. 1, we may identify
these as energy states containing a molecule of size a and a
fermion. For a given scattering length, these nearly vertical
energy levels differ by about 2h̄ω, resulting from the motion
of the fermion relative to the molecule. In addition to the
nearly vertical energy levels, most interestingly, we observe
also some nearly horizontal energy levels, which converge
to the noninteracting spectrum in the BEC limit. In analogy
with the two-body case, we may identify these horizontal
levels as the energy spectrum of three repulsively interacting
fermions. We show explicitly in Fig. 3(b) the ground-state
level of three repulsively interacting fermions, which increases
in energy from point 2 to point 3 with increasing scattering
length from a = 0+ to a = +∞. For comparison, we also
show the ground-state level of three attractively interacting
fermions at a negative scattering length, which decreases in
energy from point 2 to point 1 with increasing absolute value
of a.

This identification of energy spectrum for repulsive interac-
tions, however, is not as rigorous as in the two-body case. There
are many apparent avoided crossings between the vertical and
horizontal energy levels. Therefore, by changing a positive
scattering length from the BEC limit to the unitarity limit, three
fermions initially at the horizontal level may finally transition
to a vertical level, provided that the sweep of scattering length
is sufficiently slow and adiabatic. This leads to the conversion
of fermionic atoms to bosonic molecules. A detailed analysis of
the loss rate of fermionic atoms as a function of sweep rate may
be straightforwardly obtained by applying the Landau-Zener
tunneling model.

Let us now focus on the resonance case of most significant
interest. In Fig. 3, we show explicitly by green (solid) dots
the vertical energy levels in the unitarity limit. These levels
should be excluded if we are interested in the spectrum of
repulsively interacting fermions. Amazingly, for each given
angular momentum, these energy levels form a regular ladder
with an exact energy spacing of 2h̄ω [29]. Using the exact
solution in the unitarity limit, Eq. (27), we may identify
unambiguously that the energy ladder is given by

Erel = (2q + sl,0 + 1)h̄ω. (32)

Therefore, in the unitarity limit the lowest-order solution of the
hyperangle equation gives rise to the relative wave function
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of a molecule and a fermion. Thus, it should be discarded
when considering three resonantly interacting fermions with
an effective repulsive interaction.

This observation immediately leads to the ground-state
energy of three repulsively interacting fermions,

E↑↓↑
gs = (s1,1 + 1)h̄ω + 1.5h̄ω � 6.858 249 309h̄ω, (33)

including the zero-point energy of the center-of-mass motion,
1.5h̄ω. This ground-state energy is higher than that of three
fully polarized fermions, which is,

E↑↑↑
gs = 1.5h̄ω + 2.5h̄ω + 2.5h̄ω = 6.5h̄ω. (34)

Thus, in the presence of repulsive interactions, the ground
state of three fully polarized fermions is unstable with respect
to a single spin-flip, suggestive of an itinerant ferromagnetic
transition at a certain scattering length for three fermions.

IV. QUANTUM VIRIAL EXPANSION
FOR THERMODYNAMICS

The few-particle solutions presented previously can provide
information about the high-temperature thermodynamics of
many-body systems, through a quantum virial expansion of the
grand thermodynamic potential [6,32]. In the grand canonical
ensemble, the thermodynamic potential is given by

� = −kBT lnZ, (35)

where kB is the Boltzmann constant and

Z = Tr exp[−(H − µN )/kBT ] (36)

is the grand partition function. We may rewrite this in terms
of the partition function of clusters,

Qn = Trn[exp(−H/kBT )], (37)

where the integer n denotes the number of particles in the
cluster and the trace Trn is taken over n-particle states with
a proper symmetry. The partition function of clusters Qn can
be calculated using the complete solutions of an n-particle
system. The grand partition function is then written as

Z = 1 + zQ1 + z2Q2 + · · · , (38)

where z = exp(µ/kBT ) is the fugacity. At high temperatures,
it is well-known that the chemical potential µ diverges to
−∞, so the fugacity would be very small, z  1. We can
then expand the high-temperature thermodynamic potential in
powers of the small parameter z,

� = −kBT Q1[z + b2z
2 + · · · + bnz

n + · · ·], (39)

where bn may be referred to as the nth (virial) expansion
coefficient. It is readily seen that

b2 = (
Q2 − Q2

1

/
2
)/

Q1, (40)

b3 = (
Q3 − Q1Q2 + Q3

1

/
3
)/

Q1, etc. (41)

These equations present a general definition of the quantum
virial expansion and are applicable to both homogeneous and
trapped systems. The determination of the nth virial coefficient
requires knowledge of up to the n-body problem.

In practice, it is convenient to concentrate on the interaction
effects only. We thus consider the difference �bn ≡ bn − b(1)

n

and �Qn ≡ Qn − Q(1)
n , where the superscript “1” denotes

the noninteracting systems. For the second and third virial
coefficient, we shall calculate

�b2 = �Q2/Q1 (42)

and

�b3 = �Q3/Q1 − �Q2. (43)

A. Noninteracting virial coefficients

The background noninteracting virial coefficients can be
conveniently determined by the noninteracting thermody-
namic potential. For a homogeneous two-component Fermi
gas, this takes the form

�
(1)
hom = −V

2kBT

λ3

2√
π

∫ ∞

0
t1/2 ln(1 + ze−t ) dt, (44)

where λ ≡ [2πh̄2/(mkBT )]1/2 is the thermal wavelength and
Q1, hom = 2V/λ3. This leads to

b
(1)
n, hom = (−1)n+1

n5/2
. (45)

Hereafter, we use the subscript “hom” to denote the quantity
in the homogeneous case; otherwise, by default we refer to a
trapped system.

For a harmonically trapped Fermi gas, the noninteracting
thermodynamic potential in the semiclassical limit (neglecting
the discreteness of the energy spectrum) is

�(1) = −2(kBT )4

(h̄ω)3

1

2

∫ ∞

0
t2 ln(1 + ze−t ) dt, (46)

where Q1 = 2(kBT )3/(h̄ω)3. Taylor expanding in powers of z

gives rise to

b(1)
n = (−1)n+1

n4
. (47)

We note that the noninteracting virial coefficients in the
homogeneous case and the trapped case are related by

b(1)
n = b

(1)
n, hom

n3/2
. (48)

B. Second virial coefficient in a harmonic trap

We now calculate the second virial coefficient of a trapped
interacting Fermi gas. In a harmonic trap, the oscillator length
d provides a large length scale, compared to the thermal
wavelength λ. Alternatively, we may use ω̃ = h̄ω/kBT  1
to characterize the intrinsic length scale relative to the trap.
All the virial coefficients and cluster partition functions in
harmonic traps therefore depend on the small parameter ω̃.
We shall be interested in a universal regime with vanishing ω̃,
in accord with the large number of atoms in a real experiment.

To obtain �b2, we consider separately �Q2 and Q1.
The single-particle partition function Q1 is determined by
the single-particle spectrum of a 3D harmonic oscillator,
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Enl = (2n + l + 3/2)h̄ω. We find that Q1 = 2/[exp(+ω̃/2) −
exp(−ω̃/2)]3 � 2(kBT )3/(h̄ω)3. The prefactor of 2 accounts
for the two possible spin states of a single fermion. In the
calculation of �Q2, it is easy to see that the summation over
the center-of-mass energy gives exactly Q1/2. Using Eq. (10),
we find that

�batt
2 = 1

2

∑
νn

[
e−(2νn+3/2)ω̃ − e−(2ν

(1)
n +3/2)ω̃

]
, (49)

where the noninteracting ν(1)
n = n (n = 0,1,2, . . . ,) and the

superscript “att” (or “rep”) means the coefficient of an
attractively (or repulsively) interacting Fermi gas. The second
virial coefficient of a trapped attractive Fermi gas in the
BEC-BCS crossover was given in Fig. 3(a) of Ref. [6].

To consider the second virial coefficient of a repulsively
interacting Fermi gas, we shall restrict ourselves to a positive
scattering length and exclude the lowest ground-state energy
level in the summation of the first term in Eq. (49), which
corresponds to a bound molecule.

1. Unitarity limit

At resonance with an infinitely large scattering length, the
spectrum is known exactly, νn,∞ = n − 1/2, giving rise to

�batt
2,∞ = 1

2

exp(−ω̃/2)

[1 + exp(−ω̃)]
= +1

4
− 1

32
ω̃2 + · · · . (50)

For a repulsive Fermi gas in the unitarity limit, we shall discard
the lowest “molecular” state with ν0,∞ = −1/2 and, therefore,

�b
rep
2,∞ = 1

2

exp(−ω̃/2)

[1 + exp(+ω̃)]
= −1

4
+ ω̃

4
+ · · · . (51)

The term ω̃2 or ω̃ in Eqs. (50) and (51) is nonuniversal and
is negligibly small for a cloud with a large number of atoms.
We therefore obtain the universal second virial coefficients:
�batt

2,∞ = +1/4 and �b
rep
2,∞ = −1/4, which are temperature

independent.

C. Third virial coefficient in a harmonic trap

The calculation of the third virial coefficient, which is given
by �b3 = �Q3/Q1 − �Q2, is more complicated. Either
the term �Q3/Q1 or �Q2 diverges as ω̃ → 0, but the
leading divergences cancel with each other. In the numerical
calculation, we have to carefully separate the leading divergent
terms and calculate them analytically. It is readily seen that the
spin states of ↑↓↑ and ↓↑↓ configurations contribute equally
to Q3. The term Q1 in the denominators is canceled exactly
by the summation over the center-of-mass energy. We thus
have

�Q3/Q1 =
[∑

exp(−Erel/kBT )

−
∑

exp
( − E

(1)
rel /kBT

)]
. (52)

To proceed, it is important to analyze analytically the
behavior of Erel at high energies. For this purpose, we
introduce a relative energy Ērel, which is the solution of
Eq. (23) in the absence of the exchange term Cnm and can

be constructed directly from the two-body relative energy. In
the subspace with a total relative momentum l, it takes the
form

Ērel = (2n + l + 3/2) h̄ω + (2ν + 3/2)h̄ω, (53)

where ν is the solution of the two-body spectrum of Eq. (11). At
high energies the full spectrum Erel approaches asymptotically
to Ērel as the exchange effect becomes increasingly insignif-
icant. There is an important exception, however, occurring at
zero total relative momentum l = 0. As mentioned earlier, the
solution of Ērel at n = 0 and l = 0 is spurious and does not
match any solution of Erel. Therefore, for the l = 0 subspace,
we require n � 1 in Eq. (53).

It is easy to see that if we keep the spurious solution
in the l = 0 subspace, the difference [

∑
exp(−Ērel/kBT ) −∑

exp(−E
(1)
rel /kBT )] is exactly equal to �Q2, since in Eq. (53)

the first part of the spectrum is exactly identical to the spectrum
of the center-of-mass motion. The spurious solution gives a
contribution,∑

νn

[
e−(2νn+3)ω̃ − e−(2ν

(1)
n +3)ω̃

] ≡ 2e−3ω̃/2�batt
2 , (54)

which should be subtracted. Keeping this in mind, we finally
arrive at the following expression for the third virial coefficient
of a trapped Fermi gas with repulsive interactions:

�batt
3 =

∑ [
e
− Erel

kB T − e
− Ērel

kB T
] − 2e−3ω̃/2�batt

2 . (55)

The summation is over all the possible relative energy levels
Erel and their asymptotic values Ērel. It is well-behaved and
converges at any scattering length. The third virial coefficient
of a trapped attractive Fermi gas in the BEC-BCS crossover is
given in Fig. 3(b) of Ref. [6].

1. Unitarity limit

In the unitarity limit, it is more convenient to use the
exact spectrum given by Eq. (27), where sl,n can be obtained
numerically to arbitrary accuracy and the noninteracting s

(1)
l,n

is given by Eq. (30). To control the divergence problem, we
shall use the same strategy as before and to approach sl,n by
using its asymptotic value s̄l,n given in Eq. (31).

Integrating out the q degree of freedom and using Eq. (50)
to calculate �Q2, we find that

�batt
3,∞ = e−ω̃

1 − e−2ω̃

[∑
l,n

(e−ω̃sl,n − e−ω̃s̄l,n ) + A

]
, (56)

where A is given by

A =
∑
l,n

(
e−ω̃s̄l,n − e−ω̃s

(1)
l,n

) − e−ω̃

(1 − e−ω̃)2
. (57)

We note that, for the summation, implicitly there is a prefactor
(2l + 1), accounting for the degeneracy of each subspace. The
value of A can then be calculated analytically, leading to

A = −e−ω̃(1 − e−ω̃). (58)
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We have calculated numerically
∑

l,n(e−ω̃sl,n − e−ω̃s̄l,n ) by
imposing the cutoffs of n < nmax = 512 and l < lmax = 512.
We find that

�batt
3,∞ � −0.068 339 60 + 0.038 867ω̃2 + · · · . (59)

The numerical accuracy can be further improved by suitably
enlarging nmax and lmax. For a Fermi gas with infinitely large
repulsions, we need to exclude the states involving a molecule.
Thus, in the calculation of �Q3/Q1, we exclude the energy
levels associated with sl,n=0, as given by Eq. (32). In the
calculation of �Q2, we shall remove the lowest two-body
state with ν0,∞ = −1/2. In the end, we find that

�b
rep
3,∞ � 0.349 76 − 0.776 07ω̃ + · · · . (60)

By neglecting the dependence on ω̃ in the thermodynamic
limit, we obtain the universal third virial coefficients:

�batt
3,∞ � −0.068 339 60, (61)

�b
rep
3,∞ � 0.349 76. (62)

D. Unitary virial coefficients in homogeneous space

We have so far studied the virial coefficients in a harmonic
trap. In the unitarity limit, there is a simple relation between
the trapped and the homogeneous virial coefficient, as inspired
by Eq. (48). This stems from the universal temperature
independence of all virial coefficients in the unitarity limit. In
the thermodynamic limit, let us consider the thermodynamic
potential of a harmonic trapped Fermi gas in the local-
density approximation � = ∫

dr�(r), where �(r) is the local
thermodynamic potential:

�(r) ∝ z (r) + b2,∞, homz2 (r) + · · · . (63)

Here, the local fugacity z(r) = z exp[−V (r)/kBT ] is de-
termined by the local chemical potential µ(r) = µ − V (r).
On spatial integration, it is readily seen that the universal
(temperature independent) part of the trapped virial coefficient
is

bn,∞ = bn,∞, hom

n3/2
. (64)

We therefore immediately obtain that the homogeneous second
virial coefficients in the unitarity limit are

�batt
2,∞, hom = + 1√

2
, (65)

�b
rep
2,∞, hom = − 1√

2
, (66)

and the homogeneous third virial coefficients are

�batt
3,∞, hom � −0.355 012 98, (67)

�b
rep
3,∞, hom � +1.817 4. (68)

The homogeneous virial coefficients are therefore significantly
larger than their trapped counterparts. The factor of n3/2 is
clearly due to the higher density of states in a harmonically
trapped geometry.

V. HIGH-T EQUATION OF STATE OF A STRONGLY
INTERACTING FERMI GAS

We are now ready to calculate the equations of state in
the high temperature regime, by using the thermodynamic
potentials

�hom = �
(1)
hom − V

2kBT

λ3
(�b2, homz2 + · · ·) (69)

and

� = �(1) − 2(kBT )4

(h̄ω)3
(�b2z

2 + �b3z
3 + · · ·), (70)

respectively, for a homogeneous or a harmonically trapped
Fermi gas. Here, the noninteracting thermodynamic potentials
are given by Eqs. (44) and (46). All the other thermodynamic
quantities can be derived from the thermodynamic potential
by the standard thermodynamic relations, for example, N =
−∂�/∂µ, S = −∂�/∂T , and then E = � + T S + µN .

As a concrete example, let us focus on the unitarity limit
in the thermodynamic limit, which is of the greatest interest.
The equations of state are easy to calculate because of the
temperature independence of virial coefficients. It is also easy
to check the well-known scaling relation in the unitarity limit:
E = −3�/2 for a homogeneous Fermi gas [32] and E = −3�

for a harmonically trapped Fermi gas [4]. The difference of
the factor of 2 arises from the fact that, according to the virial
theorem, in harmonic traps the internal energy is exactly equal
to the trapping potential energy.

To be dimensionless, we take the Fermi temperature TF or
the Fermi energy (EF = kBTF ) as the units for temperature and
energy. For a homogeneous or a harmonically trapped Fermi
gas, the Fermi energy is given by EF = h̄2(3π2N/V )2/3/2m

and EF = (3N )1/3h̄ω, respectively. In the actual calculations,
we determine the number of atoms N , the total entropy S, and
the total energy E at a given fugacity and a fixed temperature
(i.e., T = 1) and consequently obtain the Fermi temperature
TF and the Fermi energy EF . We then plot the energy or
energy per particle, E/(NEF ) and S/(NkB), as a function of
the reduced temperature T/TF .

FIG. 4. (Color online) Energy per particle E/(NEF ) as a function
of reduced temperature T/TF for a homogeneous Fermi gas with
infinitely attractive and repulsive interactions. The predictions of
quantum virial expansion up to the second- and third-order are shown
by solid lines and dashed lines, respectively. For comparison, we plot
the ideal gas result with the dot-dashed line.
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FIG. 5. (Color online) Entropy per particle S/(NEF ) as a function
of reduced temperature T/TF for a homogeneous Fermi gas with
infinitely attractive and repulsive interactions. The other details are
the same as in Fig. 4.

A. Homogeneous equation of state

We report in Figs. 4 and 5 the temperature dependence of
the energy and entropy of a strongly attractively or repulsively
interacting homogeneous Fermi gas. The solid line and the
dashed line are the predictions of the quantum virial expansion
up to the third order (VE3) and the second order (VE2),
respectively. For comparison, we also show the ideal gas result
by the thin dot-dashed line.

For a strongly attractively interacting Fermi gas, we observe
that the quantum virial expansion is valid down to the
degeneracy temperature TF , where the predictions using the
second-order or third-order expansion do not greatly differ.
We note that our prediction of the third virial coefficient
of a unitarity Fermi gas, �batt

3,∞, hom � −0.355 012 98, was
experimentally confirmed to within 5% relative accuracy in the
most recent thermodynamic measurement at École Normale
Supérieure (ENS) by Nascimbène and co-workers [7].

FIG. 6. (Color online) Energy per particle E/(NEF ) as a function
of reduced temperature T/TF for a trapped Fermi gas with infinitely
attractive and repulsive interactions. The predictions of quantum virial
expansion up to the second and third order are shown by solid lines
and dashed lines, respectively. For comparison, we plot the ideal gas
result with the dot-dashed line. We show also the experimental data
measured at ENS by empty squares for an attractive Fermi gas at
unitarity [4,7], which agree extremely well with the prediction from
quantum virial expansion.

FIG. 7. (Color online) Entropy per particle S/(NEF ) as a function
of reduced temperature T/TF for a trapped Fermi gas with infinitely
attractive and repulsive interactions. The other details are the same as
in Fig. 6.

However, for a strongly repulsively interacting Fermi gas,
the applicability of the quantum virial expansion is severely
reduced: it seems to be applicable only for T > 5TF . Below
this characteristic temperature, the difference between the
second-order and the third-order prediction becomes very
significant. This is partly due to the large absolute value of the
third virial coefficient, suggesting that in this case the virial
expansion converges very slowly.

B. Harmonically trapped equation of states

We finally present in Figs. 6 and 7 the high-temperature
expansion prediction for the equation of state of a harmonically
trapped Fermi gas in the strongly interacting regime. Due to the
significantly reduced virial coefficients, the virial expansion
in a trap has much broader applicability. For a strongly attrac-
tively interacting Fermi gas, it is now quantitatively applicable
down to 0.5TF , as confirmed by the precise experimental
measurement at ENS (empty squares) [4,7]. At the same
time, the virial expansion for a strongly repulsively interacting
gas seems to be qualitatively valid at T > TF . At this
temperature, the energy of the repulsively interacting Fermi
gas is only marginally higher than the ideal, noninteracting
energy. Considering the large energy difference between a
fully polarized Fermi gas and a nonpolarized Fermi gas (i.e.,
at the order of NEF ), we conjecture that a strongly repulsively
interacting Fermi gas does not have itinerant ferromagnetism
in the temperature regime where the quantum virial expansion
theory is applicable.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have presented a complete set of exact
solutions for three attractively interacting fermions in a
harmonic trap, with either positive or negative scattering
lengths. First, we have outlined the details of our previous
studies on the quantum virial expansion [6], in particular
the method for calculating the third virial coefficient which
was recently confirmed experimentally. In addition, we have
opened up the previously unexplored repulsively interacting
regime and have presented a few-body perspective of itinerant
ferromagnetism. We have also studied the high-temperature
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thermodynamics of a strongly repulsively interacting Fermi
gas, by calculating its second and third virial coefficients in
the unitarity limit.

On the positive scattering length side of a Feshbach
resonance, a repulsively interacting Fermi gas is thought to
occur by excluding all the many-body states which contain
a moleculelike bound state for any two atoms with unlike
spins. Strictly speaking, this is a conjecture which stems from
a two-body picture. We have examined this conjecture using
the exact three-fermion energy spectrum near the resonance.
We have found some horizontal energy levels that may
be identified as the energy spectrum of three repulsively
interacting fermions, as well as some vertical energy levels
involving a tightly bound molecule. However, many avoided
crossings between horizontal and vertical levels make it
difficult to unambiguously identify the energy spectrum of
a repulsive Fermi system.

For three repulsively interacting fermions in a harmonic
trap, we have shown that close to the resonance the ground-
state energy is higher than that of three fully polarized
fermions. This is an indication of the existence of itinerant
ferromagnetism in a trapped strongly repulsively interact-
ing Fermi gas. We have also considered the possibility of
itinerant ferromagnetism at high temperatures. We have found
that it does not exist in the regime where a quantum virial
expansion is applicable. This gives an upper bound (∼TF ) for
the critical ferromagnetic transition temperature.

Our high-temperature equations of state of a strongly
repulsively interacting Fermi gas have a number of potential
applications. We anticipate that these results can provide an un-
biased benchmark for future quantum Monte Carlo simulations
of strongly repulsively interacting Fermi gases at high temper-
atures [33–35], using either hard-sphere interatomic potentials
or resonance interactions. These results are also directly
testable in future experimental measurements, as inspired by
the most recent thermodynamics measurements at ENS that
have already confirmed our predicted second and third virial
coefficients for strongly attractively interacting fermions [7].
Our exact three-fermion solutions in 3D harmonic traps will
also be useful for understanding the dynamical properties
of strongly interacting Fermi gases at high temperatures by
applying a similar quantum virial expansion for the dynamic
structure factors [36] and single-particle spectral functions
[37].

These exact solutions of three interacting particles can
be generalized to other dimensions, by adopting a suitable
Bethe-Peierls boundary condition for the contact interactions.
Of particular interest is the case of two dimensions, where
the reduction of the spatial dimensionality increases the
role of fluctuations and therefore imposes severe challenges
for theoretical studies. The three-body solutions in 2D and
the resulting high-temperature equations of state of strongly
interacting systems will be given elsewhere and provide a
useful starting point to understanding more sophisticated col-
lective phenomena such as the Berezinsky-Kosterlitz-Thouless
transition and non-Fermi-liquid behavior.

Note added. Recently, we became aware of a very recent
work by Daily and Blume [38], in which the energy spectrum
of three and four fermions has been calculated using hyper-
spherical coordinates with a stochastic variational appoach.

Our exact results are in excellent agreement with theirs when
there is an overlap.

ACKNOWLEDGMENTS

This work was supported in part by the ARC Centre
of Excellence, ARC Discovery Projects No. DP0984522
and No. DP0984637, NSFC Grant No. 10774190, and
NFRPC (Chinese 973) Grants No. 2006CB921404 and
No. 2006CB921306.

APPENDIX A: CALCULATION OF Cnn′

In this appendix, we outline the details of how to construct
the matrix element Cnn′ in Eq. (23), which is given by

Cnn′ ≡
∫ ∞

0
ρ2dρRnl (ρ) Rn′l

(ρ

2

)
ψ rel

2b

(√
3

2
ρ; νl,n′

)
, (A1)

where

Rnl (ρ) =
√

2n!

� (n + l + 3/2)
ρle−ρ2/2L(l+1/2)

n (ρ2) (A2)

is the radial wave function of an isotropic 3D harmonic
oscillator and the two-body relative wave function is

ψ rel
2b = �(−νl,n′ )U

(
−νl,n′ ,

3

2
,
3

4
ρ2

)
exp

(
−3

8
ρ2

)
. (A3)

Here, for convenience we have set d = 1 as the unit of length.
L

(l+1/2)
n is the generalized Laguerre polynomial and U is the

second Kummer confluent hypergeometric function. A direct
integration for Cnn′ is difficult, since the second Kummer
function has a singularity at the origin. The need to integrate for
different values of νl,n′ also causes additional complications.

It turns out that a better strategy for the numerical
calculations is to write

ψ rel
2b =

∞∑
k=0

1

k − νl,n′

√
� (k + 3/2)

2k!
Rk0

(√
3

2
ρ

)
, (A4)

by using the exact identity

�(−ν)U

(
−ν,

3

2
,x2

)
=

∞∑
k=0

L
1/2
k (x2)

k − ν
. (A5)

Therefore, we find that

Cnn′ =
∞∑

k=0

1

k − νl,n′

√
�(k + 3/2)

2k!
Cl

nn′k, (A6)

where

Cl
nn′k ≡

∫ ∞

0
ρ2dρRnl (ρ) Rn′l

(ρ

2

)
Rk0

(√
3

2
ρ

)
(A7)

can be calculated to high accuracy with an appropriate integra-
tion algorithm. In checking convergence of the summation over
k, we find numerically that for a cutoff nmax (i.e., n,n′ < nmax),
Cl

nn′k vanishes for a sufficiently large k > kmax ∼ 4nmax.
In practical calculations, we tabulate Cl

nn′k for a given
total relative angular momentum. The calculation of Cnn′ for
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different values of νl,n′ then reduces to a simple summa-
tion over k, which is very efficient. Numerically, we have
confirmed that the matrix Cnn′ is symmetric, that is, Cnn′ =
Cn′n.

APPENDIX B: CALCULATION OF sl,n

The calculation of sl,n seems straightforward by using
the Bethe-Peierls boundary condition in hyperspherical co-
ordinates (28). However, we find that numerical accuracy is
low for large n and l due to the difficulty of calculating the
hypergeometric function 2F1 accurately using IEEE standard
precision arithmetic. We have therefore utilized MATHE-
MATICA software that can perform analytical calculations
with unlimited accuracy. For this purpose, we introduce

�sl,n = sl,n − s̄l,n. After some algebra, we find the following
boundary condition for t ≡ �sl,n/2,

sin (πt) =
√

π

3

(−1)n+l � (n + l + 1 + t)

2l�
(
l + 3

2

)
� (n + 1 + t)

f (t) , (B1)

where we have defined a function

f (t) ≡ 2F1

(
−n − t,n + l + 1 + t,l + 3

2
;

1

4

)
. (B2)

This equation can be solved using the MATHEMATICA routine
“FindRoot,” by seeking a solution around t = 0. It is also easy
to write a short program to solve Eq. (B1) continuously for
n < nmax = 512 and l < lmax = 512. In a typical current PC,
this takes several days. The results can be tabulated and stored
in a file for further use.
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